Workshop on Dislocations in multi-crystalling silicon
Freiberg, 2012-03-27/28

Interaction of point defects with dislocations

Hartmut S. Leipner

Interdisziplinäres Zentrum für Materialwissenschaften

Nanotechnikum Weinberg –

Martin-Luther-Universität Halle-Wittenberg

Dislocation models

Continuum mechanics/dislocation dynamics

Molecular dynamics

Atomistic/quantum mechanics

"Ptolemaic" model of dislocations

60° dislocation in the diamond structure, $\mbox{\bf \it b}=\frac{a}{2}\langle 110\rangle.$ [Shockley 1953]

Dissociation

Dissociation of a perfect 60° dislocation in the diamond structure into a 30° and a 90° partial. The Shockley partial dislocations, $\boldsymbol{b} = \frac{\boldsymbol{a}}{6}\langle 211\rangle$, are separated by a stacking fault.

Reconstruction

Unreconstructed and reconstructed 30° partial

Dislocation defects

Left and right kink on the 30° partial

Incorporation of vacancies in the core

Vacancy in the core of a 30° partial as a local transition from the glide to the shuffle set

Cutting of dislocations

Cutting of edge dislocations

Formation of vacancy trails

Number of point defects

$$c = \frac{1}{\Omega} \frac{\boldsymbol{\xi}_1 \cdot \boldsymbol{u} \times \boldsymbol{\xi}_2}{|\boldsymbol{\xi}_1 \cdot \boldsymbol{u} \times \boldsymbol{\xi}_2|} \boldsymbol{b}_1 \cdot \boldsymbol{u} \times \boldsymbol{b}_2$$

Agglomerations of vacancies as a result of jog dragging at screw dislocations

Results of plastic deformation experiments

Positron annihilation/density function tight binding calculations

- Long positron lifetime due to large vacancy agglomerations
- Stable vacancy clusters V₆, V₁₀, V₁₄
- ♦ Magic numbers of stable clusters: n = 4i + 2, i = 1, 2, 3, ...

Interstitials

Type of the point defect emitted depends on the sign of the jog

Extended jog

Structure of an extended jog in the acute-angle configuration on the screw DB. The X–Y cut illustrates the dissociation of the jog in a Shockley and a Frank partial (Burgers vectors βD and $B\beta$). The latter one has a pure edge character and can only follow the glide motion of the screw by emission or absorption of point defects.

Superjogs

Formation of edge dipoles and prismatic dislocation loops

Interaction with impurities

Model of Read (1957): The line charge of the dislocation is screened by a cylindrical space charge region, *i. e.* a negative dislocation is surrounded by positively charged acceptors.

Radius of the Read cylinder

$$R = \frac{1}{\sqrt{a\pi|N_{\rm d} - N_{\rm a}|}}$$

(a distance between charged core atoms, N_d , N_a donor, acceptor density)

Accumulation of point defects at dislocations

Mesoscopic distribution of EL2 centers in VGF GaAs as seen in optical absorption at 1 µm. The concentration of EL2 distinctly increases at dislocations.

[R Kremer, S Teichert, Comp. Semicond. 2003]

Distribution of carriers

Density of free carriers *n* measured by confocal Raman microscopy at dislocations in GaAs:Si (*left*) and GaAs:S (*right*)

Cottrell atmosphere

Equilibrium case

Distribution of impurities at an edge dislocation for time $t \rightarrow \infty$

$$C(r) = C_{\text{eq}} \exp\left(-\frac{\beta \sin \theta}{r k_{\text{B}} T}\right)$$
 $\beta = \frac{G b_{\text{e}}}{3\pi} \frac{1 + v}{1 - v} \Delta V$

Distribution of copper at a 60° dislocation in GaAs for different solubilities $C_{\rm eq}$

Microscopic processes at dislocations

 Elastic interaction of point defects and dislocations

$$\Phi(r) = -\frac{A}{r}\sin\theta$$

 Diffusion of point defects, e. g. via kick-out or vacancy mechanism

$$X_i \rightleftharpoons X_s + I$$

Formation of precipitates

$$X_i \mathop{\rightleftarrows} p$$

Formation of dislocation loops
 I $\rightleftharpoons \ell$

Formation of defect complexes

$$X_s + V \rightleftharpoons X_s V$$

◆ Fermi-level effect

$$\frac{C_{X^z}}{C_{n_i}} = \left(\frac{n}{n_i}\right)^z$$

Diffusion-drift-aggregation model

Elastic interaction potential

$$\Phi(r) = -\frac{A}{r}\sin\theta$$
 $A = \frac{4}{3}\frac{1+v}{1-v}Grb\varepsilon$

Diffusion current point defects Drift Precipitation
$$\frac{\partial C(r,t)}{\partial t} = \nabla D \left[\nabla C(r,t) - \frac{C(r,t)}{C_{\rm eq}(r)} \nabla C_{\rm eq}(r) + \frac{C(r,t)}{k_{\rm B}T} \nabla \Phi(r) \right] - \gamma \Psi_{\rm p}$$

Non-equilibrium atmosphere

Homogeneous formation of precipitates only inside a cylinder with the radius r_0 about the dislocation core

$$\gamma = \begin{cases} 1 & \text{for } r < r_0 \\ 0 & r > r_0 \end{cases}$$

Nucleation rate according to classical nucleation theory in the dislocation region

$$\Psi = 4\pi r_0 C(r,t)^2 D \exp\left(-\frac{16}{3} \frac{\sigma^3 V^2}{k_{\rm B} T (k_{\rm B} T \ln \Sigma)^2}\right)$$

(σ interface energy, V atomic volume, Σ supersaturation)

Simulation of the distribution of carriers

- From the DDA model: variation of the concentration of defects (interstitials, charged vacancies, impurities, complexes
- Calculation of the local carrier concentration

Distribution of free carriers at a 60° dislocation in GaAs:S without and with consideration of native point defects

Conclusions

- Straight, perfect dislocation line hardly exists
- Complicated set of core defects; interaction with intrinsic defects of the bulk
- Hardly to separate in spectroscopic measurements different types of defects in the bulk, in the strain field of the dislocation, and in the core
- Shuffle set can be stabilized by the interaction with vacancies
- An extended defect zone, characterized by the depletion or enrichment of various point defects, is formed around dislocations.
- Electrical activity of a dislocation is the superposition of core effect, core defects, segregation of impurities in the core, accumulation/depletion of impurities in the strain field

Crashed-car dislocations [Courtesy J. Rabier]

Hartmut S. Leipner

Interdisziplinäres Zentrum für Materialwissenschaften

Martin-Luther-Universität Halle-Wittenberg

References

- W. Shockley: Phys. Rev. **91** (1953) 228.
- W. T. Read: Phil. Mag. **45** (1954) 775.
- R. Kremer, S. Teichert: Comp. Semicond. 9 (2003) 35.